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Abstract
Quantum key distribution is the best known application of quantum
cryptography. Previously proposed proofs of security of quantum key
distribution contain various technical subtleties. Here, a conceptually simpler
proof of security of quantum key distribution is presented. The new insight is
the invariance of the error rate of a teleportation channel: we show that the error
rate of a teleportation channel is independent of the signals being transmitted.
This is because the non-trivial error patterns are permuted under teleportation.
This new insight is combined with the recently proposed quantum-to-classical
reduction theorem. Our result shows that assuming that Alice and Bob have
fault-tolerant quantum computers, quantum key distribution can be made
unconditionally secure over arbitrarily long distances even against the most
general type of eavesdropping attacks and in the presence of all types of noises.

PACS numbers: 03.67.−a, 03.65.Ta

1. Introduction

Perfectly secure communication between two users can be achieved if they share beforehand
a common random string of numbers (a key). A big problem in conventional cryptography is
the key distribution problem: in classical physics, there is nothing to prevent an eavesdropper
from monitoring the key distribution channel passively, without being caught by the legitimate
users. Quantum key distribution (QKD) [1, 12] has been proposed as a new solution to the
key distribution problem. In quantum mechanics, there is a well-known ‘quantum no-cloning
theorem’ which states that it is impossible for anyone (including an eavesdropper) to make
a perfect copy of an unknown quantum state [9, 24]. Therefore, it is generally thought that
eavesdropping on a quantum channel will almost surely produce detectable disturbances. For
a survey on quantum cryptography, see, for example, [13, 14].
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1.1. Prior work on security of QKD

A proof of security of QKD turned out to be a hard problem: an ingenious eavesdropper,
Eve, can adopt many different eavesdropping strategies. Instead of measuring the quantum
signals sent by Alice one by one, Eve may perform subtle quantum attacks in which she
entangles all the quantum signals with her ancilla. A proof of security should defeat all
possible eavesdropping strategies of Eve and take into account the imperfection of Alice and
Bob’s apparatus and the lossy nature of the quantum channel between Alice and Bob. While
many partial results had been reported in various earlier papers (for a review, see, for example,
[17]), complete proofs of security did not appear until the last few years.

Roughly speaking, there are two alternative approaches to proving the unconditional secu-
rity of QKD. The first approach by Mayers [22] (earlier versions of [22] have appeared as [20]
but they are less definite) deals with the best-known QKD scheme BB84 proposed by Bennett
and Brassard [1]. The advantage of this approach is that it does not require the deployment of
quantum computers by Alice and Bob. However, Mayers’ proof is rather complex.

The second approach deals with QKD schemes that employ subtle quantum mechanical
correlations—knownas ‘entanglement’–whichhave no classical analogue. This approach was
first suggested by Deutschet al in [10], which, however, assumes perfect quantum devices. A
more recent paper by Lo and Chau [19] addresses this issue of imperfect devices using the idea
of fault-tolerant quantum computation and quantum repeaters (i.e., relay stations) [8]. It also
derives a rigorous bound on Eve’s information under the assumption of reliable local quantum
computations. Note that the second approach requires Alice and Bob to possess quantum
computers, which are well beyond current technology. However, the second approach, as
rigorously developed in [19], has the advantage of being conceptually simpler. The idea of
commuting observables plays a key role in the second approach. By considering only com-
muting observables, one can apply directlyclassical arguments to tackle aquantum problem.

1.2. Significance of our results

It has to be said that all previously proposed proofs of security of QKD involve various
technical subtleties. Here we present a simple proof of the unconditional security of QKD.
The proof, based on the second approach, not only enjoys all the fundamental advantages
mentioned above of the recently proposed proof [19], but also is conceptually simpler.

Furthermore, our proof gives us an interesting new insight into the well known
‘teleportation’ channel [2]: with a classical random sampling method, one can assign a
set ofclassical probabilities to the various error patterns of aquantum teleportation channel.
Besides, the error rate (the probability of having a non-trivial error pattern) for each signal is
independent of the identity of the signal being transmitted. This is highly non-trivial because
the well known Einstein–Podolsky–Rosen (EPR) paradox demonstrates that applications of
classical arguments to a quantum problem often lead to fallacies [11].

2. Security requirement and ideas towards a proof

Definition. A QKD scheme is said to be unconditionally secure if, for any security parameters
k, l > 0 chosen by Alice and Bob, they can follow the protocol and construct a verification
test such that, forany eavesdropping attack by Eve that will pass the test with a non-negligible
amount of probability (i.e., more than e−k) the two following conditions are satisfied: (i) Eve’s
mutual information with the final key is always negligible (i.e., less than e−l) and (ii) the final
key is, indeed, essentially random.
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Remark. The security parametersk andl depend on how hard Alice and Bob are willing to
work towards perfect security (e.g., the size of the messages exchanged between Alice and
Bob and the number of rounds of authentication between them) and are, at least in principle,
computable from a protocol.

2.1. A simple idea, its problems and our solution

Consider the following simple idea of proof of security of QKD. Alice preparesr quantum
signals and encodes their state into a quantum error-correctingcode (QECC) (see, for example,
[3]) of lengthn which corrects sayt errors. In addition, she also preparesm other quantum
signals which will be used as test signals. She thenrandomly permutes theN = n+m signals
and sends them to Bob via a noisy channel controlled by an eavesdropper. Bob publicly
announces that he has received all theN signals from Alice. Upon Bob’s confirmation of
the receipt, Alice publicly announces the location of them test signals and their specific
state. Next Bob measures them test signals and computes their error rate,e1. Using
the error ratee1, Alice and Bob apply classical random sampling theory in statistics to
establish confidence levels for the error rate of then remaining (i.e., untested) signals and,
hence, produce a probabilistic bound on the amount of the eavesdropper’s information on
the encodedr quantum signals. (The point is that, unless there are more thant errors in
the QECC, Eve knows absolutely nothing about the encoded state.) If Alice and Bob are
satisfied with the degree of security, they measure ther quantum signals to generate anr-bit
key.

This raw idea looks simple, but it is essentially classical. It will work if the following three
requirements are satisfied. (1) Each error pattern can be assigned with a classical probability.
(2) The error rates of the signals are independent of the actual signals being transmitted (i.e.,
Eve cannot somehow change a non-trivial error operator to a trivial one depending on which
signals are transmitted). (3) The quantum error correction and key generation can be done
fault-tolerantly.

Since applications of classical arguments could be fallacious, it would be naı̈ve to assign a
probability distribution to the set of error patterns without a rigorous mathematical justification.
In fact, rather disappointingly, we are unable to establish requirements (1) and (2) for the most
general quantum channel.

Nonetheless, we manage to complete our proof of security of QKD by the following
line of arguments. We notice that requirement (1) has already been established in [16] for
the special case of the transmission of some standard states (halves of so-called EPR pairs).
Moreover, it is well known in quantum information theory that the transmission of any general
quantum state can be reduced to that of the standard state and classical communication via a
process calledteleportation [2] (which will be discussed in subsection 4.1).

Our line of attack is thus to establish requirements (1) and (2) for the special case
of a teleportation channel only. In other words, we show that, by using teleportation to
transmit quantum states through a noisy quantum channel (which may be controlled by an
eavesdropper), the error rate (i.e., the probability of having a non-trivial error operator, or
Pauli matrix, acting on the transmitted signal, as can be estimated by a classical random
sampling procedure) is independent of the quantum state being transmitted. This invariance
result ensures that, for a quantum teleportation channel, even an ingenious eavesdropper
cannot change its underlying error rate and make it dependent on the identity of the quantum
signals being transmitted. This new insight of ours—the ‘invariance of the error rate of a
quantum teleportation channel’—will be stated as proposition 5 and discussed in subsequent
sections.
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2.2. Einstein–Podolsky–Rosen pairs

Readers who are unfamiliar with quantum information should refer to appendix A. One can
measure a quantum bit (or qubit) along any direction and each measurement can give two
possible outcomes. An Einstein–Podolsky–Rosen pair of qubits has the following interesting
property. If two members of an EPR pair are measured alongany common axis, each
member will give a random outcome, and yet the outcomes of the two members will always
be anti-parallel. This is so even when the two members are distantly separated. Such an
action at a distance is at the core of the EPR paradox and it defies any simple classical
explanation.

Now, if two persons, Alice and Bob, shareR EPR pairs, they can generate a
common random string of numbers (anR-bit key) by measuring each member along
some common axis. The laws of quantum mechanics guarantee that, provided that the
R pairs are of almost perfect fidelity, the key generated will be almost perfectly random
and that Eve will have a negligible amount of information on its value. In fact, we
have

Lemma 1. (Note 28of [19].) If Alice and Bob share R EPR pairs of fidelity at least 1− 2−k,

for a sufficiently large k, and they generate an R-bit key by measuring these pairs along any
common axis, then Eve’s mutual information on the final key will be bounded by 2−c +2O(−2k)

where c = k − log2
[
2R + k + (1/ logε 2)

]
.

Proof. In supplementary material of [19]. �

So, the Holy Grail of the second approach to secure QKD is to construct a
scheme for distributingR almost perfect EPR pairs even in the presence of noise and
Eve.

3. Quantum-to-classical reduction theorem

3.1. Theory

A proof of security of QKD can be simplified greatly if one can apply well known powerful
techniques in classical probability theory and statistical theory to the problem. However,
applications of classical arguments to a quantum problem require careful justifications. A key
ingredient of our current proof is, therefore, a quantum-to-classical reduction theorem proven
in [19], which justifies the usage of classical arguments.

Let us recapitulate this quantum-to-classical reduction theorem from the viewpoint of
‘commuting observables’: conceptually, classical arguments work because all the observables
Oi under consideration are diagonal with respect to asingle basis, which we shall callB. More
concretely, letM be the observable that represents the complete von Neumann measurement
along the basisB. Since theOi andM are all diagonal with respect to the basisB, they
clearly commute with one another. Therefore, the measurementM along basisB will in no
way change the outcome of subsequent measurementsOi . Without loss of generality, we
can imagine that such a measurementM is always performed before the measurement of the
subsequentOi . Consequently, the initial state is always a classical mixture of eigenstates ofM.
Therefore, one can safely assign classical probabilities to those simultaneous eigenstates and
apply directly classical probability theory or statistical theory to deduce the values of those
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classical probabilities. In this sense, the quantum problem has a classical interpretation1.
Mathematically, this quantum-to-classical reduction theorem can be stated as the following
theorem.

Theorem 2. [19] Consider a mixed quantum state described by ρ and a set of one-dimensional
non-commuting projection operators Qj on it. Suppose there exists a complete set of coarse-
grained observables Oi of Qj such that all the Oi commute with one another. (Here, by
coarse-graining, one means that each Oi can be written as a sum of a set of orthogonal
projectors Qj and by completeness, one means that

∑
i Oi = I .) Let us consider a complete

von Neumann measurement M which commutes with all Oi . (Because of the commutativity
of the Oi, such M must exist.) Let |vk〉 be the basis vectors of M. Then, for all i,
we have

Tr(Oiρ) = Tr

(
Oi

∑
k

|vk〉〈vk |ρ|vk〉〈vk |
)
. (1)

Remark. Physically, theorem 2 says that the probability of all the coarse-grained outcomes
Oi are unchanged by a prior complete von Neumann measurementM. The full power of
theorem 2 will be demonstrated in proposition 3.

Proof. Sketch by construction, for eachOi there exists a coefficientλi and a setKi such
thatOi = λi

∑
l∈Ki

|vl〉〈vl |. From the definition of TrA as
∑

m〈vm|A|vm〉, it is now a simple
exercise to establish equation (1). �

3.2. Application to random sampling

Consider the following example (example (i) on p 2054 of [19]). Suppose two distant
observers, Alice and Bob, share a large number, sayN , pairs of qubits, which may be prepared
by Eve. Those pairs may thus be entangled with one another in an arbitrary manner and also
with the external universe, for example, an ancilla prepared by Eve. How can Alice and Bob
estimate the number of singlets in thoseN pairs? (By the number of singlets, here we mean
the expected number of ‘yes’ answers if a singlet-or-not measurement were made on each pair
individually.)

The solution is the following random sampling procedure and proposition.

Procedure. Suppose Alice and Bob randomly pickm of theN pairs and, for each pair, choose
randomly one of the three (x, y andz) axes and measure the two members along it. They
publicly announce their outcomes. Letk be the number of anti-parallel outcomes obtained in
this random sampling procedure.

Proposition 3. (From section VI of supplementary material of [19].) The fraction of singlets,
fs, in the N pairs can be estimated as (3k − m)/2m. Furthermore, confidence levels can be
deduced from classical statistical theory for a finite population (of N objects).

1 This quantum-to-classical reduction theorem is rather subtle. First, the observablesOi under consideration
are coarse-grained observables (i.e., observables with degenerate eigenvalues) rather than fine-grained ones (i.e.,
observables with non-degenerate eigenvalues). It isa priori surprising that coarse-graining as a mathematical
technique will give a classical interpretation to a quantum problem. Second, the eigenstates ofM employed in [19]
are, in fact, the so-called Bell states (see subsection 3.2 and appendix B) which exhibit non-local quantum mechanical
correlations. It isa priori surprising that such a non-local (or quantum mechanical) Bell basis can have a classical
interpretation.



6962 H-K Lo

Proof. This is a direct application of theorem 2. Let us order theN pairs. Consider, for theith
pair, the projection operationsP i

‖,a andP i
anti-‖,a for the two coarse-grained outcomes (parallel

and anti-parallel) of the measurements on the two members of the pair along thea axis where
a = x, y or z. A simple but rather important observation is that each of these projection
operators can be mathematically re-written as a linear combination of projection operators
along a single basis, namely the Bell basis (see appendix B for details). A basis forN ordered
pairs of qubits (what we shall call theN-Bell basis) consists of products of Bell basis vectors,
each of which is described by a 2N-bit string. Now, let us consider the operatorMB that
represents the action of a complete von Neumann measurement along anN-Bell basis. Since
MB , P i

‖,a andP i
anti-‖,a are diagonal with respect to a single basis (N-Bell basis), they clearly

commute with each other. Thus, a pre-measurementMB by Eve along anN-Bell basis will in
no way change the outcome forP i

‖,a andP i
anti-‖,a. With no loss of generality, we can assume

that such a pre-measurement is always performed before the subsequent measurement ofP i
‖,a

andP i
anti-‖,a. In other words, we have a classical mixture ofN-Bell basis vectors, and classical

probability theory referring only to theN-Bell basis vectors is, thus, valid. For this reason,
estimation of the number of singlets as well as confidence levels of such an estimation can be
done by classical statistical theory. �

4. Our secure QKD scheme

We remark that the fraction of singlets,fs , in proposition 3 has the significance of being the
fraction of uncorrupted qubits in a quantum communication channel shared between Alice and
Bob in the following situation. Suppose Alice preparesN EPR pairs locally and, afterwards,
sends a member of each pair to Bob via a noisy quantum channel controlled by Eve. As a
result of channel noises and eavesdropping attack, some of theN EPR pairs may be corrupted.
Proposition 3 gives us a mathematical estimate of the number of uncorrupted qubits in the
actual transmission, based on the random sampling of a small number of transmitted signals.

Since quantum error-correcting codes (QECCs) exist, it is tempting to construct a secure
QKD scheme by, first, using the random sampling procedure to estimate the error rate of
the transmission and, second, using a QECC to correct the appropriate number of errors. To
ensure that the sampling procedure is indeed random, Alice should mix up the test pairs with
the pairs in the actual QECC randomly.

However, as briefly noted in the introduction, the above idea implicitly assumes that the
following conjecture is true. Let us consider the four error operatorsI, σx, σy andσz for each
quantum signal transmitted (see appendix A for notations).

Conjecture 4. The error rate of a quantum communication channel is independent of the
signals being transmitted. More precisely, in the current case, one can safely assign a
probability for each error pattern in analyzing the security issue of a QKD scheme.

While such a conjecture is intuitively plausible, we are unaware of any rigorous proof
for a general quantum channel. To address this problem, we prove a related but perhaps
weaker result concerning a teleportation channel. We make use of the well known fact that,
any quantum signals can always be transmitted to a quantum communication channel via
teleportation.

4.1. Teleportation

In teleportation [2] a quantum signal is transported via a dual usage of prior ‘entanglement’
(i.e., standard EPR pairs shared between the sender, Alice, and the receiver, Bob) and a
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classical communication channel. The quantum signal in Alice’s hand is destroyed by her
local measurement, which generates a classical message. This message is then transmitted to
Bob via a classical communication channel. Depending on the content of this message,Bob can
then re-construct the destroyed quantum signal by applying one of the unitary transformations
I, σx, σy andσz to each of his members of the EPR pairs originally shared with Alice.

Two points are noteworthy. First, in teleportation the same prior entanglement is shared by
Alice and Bob, independent of the actual quantum signal that will subsequently be transported.
Now, since Alice always sends the same standard quantum signal to Bob during the prior
sharing part of the teleportation process, the discussion of classical random sampling theory
in subsection 3.2 can be applied directly. Second, the re-construction step in teleportation, if
done with reliable quantum computers, will not introduce new errors into the quantum system.
Indeed, if Alice and Bob use anoisy quantum state shared between them for teleportation, for
each transmitted signal, the three types of errorsσx , σy andσz are simply permuted to one
another during the re-construction process. This idea is true even for a quantum superposition
of error patterns and entanglement with an external universe (as specified by the original noisy
quantum state shared between them).

Let us formulate this result mathematically. Consider the teleportation of a systemS
consisting ofN qubits from Alice to Bob with the most general mixed stateρu. Without loss
of generality, a system decribed by a mixed state can be equivalently described by a pure state
of a larger system consisting of the original system and an ancilla. (John Smolin has coined
the name ‘the Church of the larger Hilbert space’ for this simple but useful observation, which
has recently been extensively used [10, 21, 18, 16]. For instance, the generality of the recent
proofs of the impossibility of bit commitment [21, 18] and one-out-of-two oblivious transfer
[16] follows from this idea.) Applying this idea to our current case, the state of original system
S (plus an ancillaR with which it is entangled) can be written in the following form (the
so-called Schmidt decomposition):

|v〉RS =
∑
m

cm|wm〉R|vm〉S (2)

wherecm are some complex coefficients, and|wm〉R and|vm〉S are some basis vectors of the
two systemsR andS respectively. The initial stateρu of theN pairs shared by Alice and Bob
can also bepurified in ‘the Church of the larger Hilbert space’ as

|u〉 =
∑

i1,i2,...,iN

∑
j

αi1,i2,...,iN ,j |i1, i2, . . . , iN 〉 ⊗ |j 〉 (3)

whereik denotes the state of thekth pair and it runs from̃00̃ to1̃1̃, the|j 〉 form an orthonormal
basis for the environment (or an ancilla prepared by Eve), andαi1,i2,...,iN ,j are some complex
coefficients. Each state|u〉 represents a particular mixed state. Note that|u〉 can be re-written
as an entangled sum of a linear superposition of various error patterns, i.e.,

|u〉 =
∑

i1,i2,...,iN

∑
j

αi1,i2,...,iN ,j

(∏
k

σ
(k)
ik

)
|)−〉N ⊗ |j 〉 (4)

whereσ (k)
ik

acts on Bob’s member of thekth pair as eitherI,σx , σy orσz depending on the value
of ik, and|)−〉 denotes an EPR pair. With such notation, one can prove our main proposition.

Proposition 5. Invariance of error rate under teleportation. In the above notation, suppose
the system S (described by |v〉RS = ∑

m cm|wm〉R|vm〉S of the combined system R and S in
equation (2)) is teleported using the N pairs shared by Alice and Bob (described by |u〉 of the
combined system of the N pairs and Eve’s ancilla in equation (4)). Suppose further that the
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classical outcome of Alice’s measurements is {jk}, i.e., she informs Bob to use the operator∏
k σ

(k)
jk

for the re-construction process. Then Bob’s re-constructed state for the combined
system R,S and E can be described by

∑
m

cm|wm〉R
∑

i1,i2,...,iN

∑
j

αi1,i2,...,iN ,j

[∏
k

(
σ
(k)
jk

σ
(k)
ik

σ
(k)
jk

)]
|vm〉S ⊗ |j 〉. (5)

Remark. The set of complex coefficientscmαi1,i2,...,iN ,j remains totally unchanged under
teleportation. For each teleportation outcome labelled by{jk}, the only real change lies in the
conjugation action in the error operator acting on the subsystemS, i.e.,σ (k)

ik
→ σ

(k)
jk

σ
(k)
ik

σ
(k)
jk

for eachk. (Recall thatσ (k)
jk

is always its own inverse.) Since under such conjugation the
trivial error operator (i.e., the identityI) is invariant and the three non-trivial error operators
σx , σy andσz are permuted with one another, the error rate of the teleported signal is exactly
the same as the originalN EPR pairs.

Proof of proposition 5. This is a straightforward exercise in quantum information theory [2],
which we will skip here. �

4.2. Procedure of our secure QKD scheme

Having established proposition 5, we now present the procedure of our secure QKD scheme.
Note that the procedure itself is simple. The non-trivial thing that we have done is to prove
that it is actually secure.

(1) Alice preparesN EPR pairs and sends a member of each pair to Bob through a
noisy channel. (In theory, quantum repeaters [8] and two-way schemes for so-called
entanglement purification [1] (a generalization of quantum error correcting codes) could
be used in this step. The error rate here can, therefore, be made to be very small and the
scheme works even for arbitrarily long distances.)

(2) Bob publicly announces his receipt of theN quantum signals.
(3) Alice randomly picksm of theN EPR pairs for testing. She publicly announces her choice

to Bob. For each pair, Alice and Bob randomly pick one of the three (x, y, andz ) axes
and perform a measurement on the two members along it.

(4) Alice and Bob publicly announce their measurement outcomes and use classical sampling
theory to estimate the error rate in the transmission.

Remark. Proposition 3 allows Alice and Bob to apply classical sampling theory to the
quantum problem at hand to estimate the error rate of the untested particles. Alice and
Bob then proceed with quantum error correction in the next step.

(5) Alice prepares, say,R EPR pairs and encodes theR halves of the pairs (i.e., one member
from each pair) by a quantum error-correcting code (QECC) intoN − m qubits.

Remark. The requirement of QECC will be discussed in subsection 4.3.

(6) Alice teleports theN − m qubits to Bob via the remainingN − m pairs that they share.

Remark. Proposition 5 guarantees the invariance of error rate under teleportation. So,
the estimate done by Alice and Bob in step (4) remains valid.

(7) Alice and Bob perform fault-tolerant quantum computation to generate a randomR-bit
key by measuring the state of theR encoded EPR pairs along a prescribed common axis
(say thez axis).
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4.3. Fault-tolerant quantum computation

From propositions 3 and 5 it is quite clear that, assuming reliable local quantum computers,
our scheme works perfectly. However, since local quantum computations may be imperfect,
errors may be generated during the teleportation and key generation, i.e., steps (6) and
(7). One can easily take those local errors into account by a choice of QECC with
generous error-correcting and fault-tolerant capabilities. The point is that we have a very
specific and short computation in mind (measurement along thez axis only and no unitary
computation at all). Based on any realistic error model for quantum computers and concrete
choice of QECC, one can give a generous upper bound on the number of local errors
due to imperfect quantum computation. With a fault-tolerant implementation the total
number of errors in the whole process (transmission, teleportation and key generation)
can be bounded. Therefore, provided that our QECC has sufficiently generous error-
correcting and fault-tolerant capabilities, security is guaranteed. (To be precise, in step
(5), the R EPR pairs should be prepared fault-tolerantly in anencoded form rather than
in an unencoded form.) We remark that, since the required quantum computation here is
much simpler than in [19], the present QKD scheme may be more efficient than the one
there.

5. Concluding remarks

In summary, we have presented a simple proof of the unconditional security of quantum
key distribution, i.e., ultimate security against the most general eavesdropping attack and
the most general types of noises. Our scheme allows secure QKD over arbitrarily long
distances, but it requires Alice and Bob to have reliable quantum computers, which is far
beyond current technology. However, to put things in perspective, all proposed proofs
of security of QKD involve assumptions (such as ideal sources) that are beyond current
technologies.

Notice that some of the techniques developed here and in [19] have applications. For
example, note 21 of [19] shows that teleportation is a powerful technique against the quantum
Trojan Horse attack. A new application—using random sampling and random teleportation
to prove the feasibility of a general two-party fault-tolerant quantum computation even in the
presence of eavesdroppers—will be discussed in appendix C. In fact, some of the results are
applicable even to the case when Alice and Bob do not have a quantum computer. A good
example is a quantitative statement on the trade-off between information gain and disturbance
in BB84 [19].
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Appendix A. Physics background: Einstein–Podolsky–Rosen pairs

The fundamental unit of quantum information is called a quantum bit or ‘qubit’. Physically,
it is often represented by a two-level microscopic system such as an atom or nuclear spin or
a polarized photon. Mathematically, a pure quantum state of a qubit is simply given by a unit
vector in a two-dimensional Hilbert spaceH2: let us consider any basis|0〉 and|1〉. A single
qubit in a pure state can be in any superposition of the two basis vectors, i.e.,a|0〉 + b|1〉
wherea andb are complex coefficients with the normalization|a|2 + |b|2 = 1. A pair of
qubits is described by a unit vector in the tensor product spaceH4 = H2 ⊗ H2. with the
basis states|00〉, |01〉, |10〉 and |11〉. Consider the state|)−〉 = √

1/2(|01〉 − |10〉). The
important point to note is that it is impossible to re-write|)−〉 into the form of a direct product
|u〉 ⊗ |v〉. The state|)−〉 is calledentangled because it is impossible to assign a definite
state to the individual subsystems. And|)−〉 is called an Einstein–Podolsky–Rosen (EPR)
pair.

It is common to writea|0〉 + b|1〉 also as a column vector
(
a
b

)
. The non-trivial error

operators (or Pauli matrices) are defined asσx =
(

0
1

1
0

)
, σy =

(
0
i

−i
0

)
, andσz =

(
1
0

0
−1

)
.

Appendix B. Bell basis

The basis vectors of the Bell basis are)± and,±, where

)± = 1√
2
(|↑↓〉 ± |↓↑〉) (B1)

and

,± = 1√
2
(|↑↑〉 ± |↓↓〉). (B2)

With the convention in [3], Bell basis vectors are represented by two classical bits:

,+ = 0̃0̃

)+ = 0̃1̃
(B3)

,− = 1̃0̃

)− = 1̃1̃.

Since Bell basis vectors are highly entangled, one should not think of them as direct product
states.

Appendix C. Two-party fault-tolerant quantum computation in the presence
of an eavesdropper

Here we show that random sampling and random teleportation can be used to prove the
feasibility of a general two-party fault-tolerant quantum computation even in the presence of
eavesdroppers. This may look hard because the usual requirements of fault-tolerant quantum
computation demand that the errors of different signals are independent and that the error rate
for each error to happen is smaller than some threshold value. In contrast, an eavesdropper
can introduce collective noises into the system.

Proposition 6. In the large-N limit, the procedure in proposition 3 can be used to establish
that, with a very high confidence level, the error rates of the transmitted signals are well below
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the threshold value required for a general fault-tolerant quantum computation and that the
error rates for different signals are essentially independent.

Proof. SupposeN quantum signals are teleported viaN EPR pairs such that each signal is
teleported by arandom pair (without replacement, of course) chosen by Alice and Bob. By
propositions 3 and 5, we can apply classical sampling theory to our current quantum problem.
Now, since the signals arerandomly sampled, in the large-N limit of classical sampling theory,
they haveidentical andindependent error probabilities. Therefore, by random sampling and
random teleportation, Alice and Bob can establish confidence levels for the smallness and
independence of the error rates of different signals, thus allowing subsequent fault-tolerant
quantum computations. �
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